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Least-Squares  Refinement with the Min imum Number  of Parameters  for 
Structures Containing Rigid-Body Groups of Atoms  
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A least-squares me thod  for ref inement  of structures containing groups of atoms which may  be 
t reated as rigid bodies is described. The mtmber  of parameters  to be refined is reduced to the 
min imum possible. Each group is de termined by 6 positional parameters  and 1 isotropic or 6 
anisotropic thermal  parameters.  The properties of convergence are discussed, and examples of 
refinements allow comparison with the normal  least-squares method.  

Introduct ion  

In least-squares refinement of crystal structures 
(Hughes, 1941) positional and thermal parameters of 
the single atoms are usually refined independently, 
and all programs, to my knowledge, proceed in this 
way. 

In many structures, however, particularly organic 
ones, a number of atoms form a rigid-body unit, e.g. 
the benzene ring, and so not all parameters are really 
independent but must satisfy the restrictions of the 
rigid body. 'Rigid' has to be understood as neglecting 
the interatomic vibrations of a molecule or of a part 
of it, but often this definition of 'rigid' in the first 
stage of a refinement is sufficiently valid. If the 
accuracy of the data permits, the rigid-body concept 
may have to be discarded in the final stage of the 
refinement. 

Until this stage is reached, it is advantageous to 
reduce the number of parameters and to determine 
them with a correspondingly higher accuracy. Know- 
ledge of the distribution of atoms of a specific group 
is put into the refinement in order to evaluate the 
really unknown parameters more exactly. A similar 
idea has been developed in the field of the Patterson 
synthesis, notably by Hoppe (1957) in the Falt- 
molekiilmethode. 

The use of group parameters instead of single-atom 
parameters should offer the following advantages: 

1. The group is forced to shift as a complete unit. 
Meaningless changes of the parameters within ~ group 
cannot occur, as they often do in normal least- 
squares refinement when the intensity data are of 
average or poor quality, e.g. as obtained by the 
multiple-film method. From the mathematical point 
of view this means that  the set of single-atom para- 
meters, which are being adapted to poor intensity data, 
is reduced to a smaller set of group parameters, which 
from the very begimSng draws a sharper average 
over the errors of the intensity data. 

2. When only a few intensity values can be meas- 
ured, it may be possible to refine a small number of 

group parameters meaningfully, whereas the number 
of single-atom parameters would be too large to 
permit refinement. 

3. The range of convergence to the correct structure 
minimum is much larger than in the normal refine- 
ment. This means that  structures containing rigid 
groups can often be refined successfully with the 
group method, when the trial parameters are so poor 
that  the normal least-squares method ca~mot effect 
convergence to the correct minimum. This is perhaps 
the most important aspect of the method and will be 
discussed in more detail in a later section. 

4. Hydrogen atoms may be introduced at an early 
stage of the refinement. One needs to know only their 
positions relative to their neighbouring atoms. 

5. When the groups contain many atoms, the order 
of the matrix to be computed will be much lower. 
This results in a considerable saving of computing 
time, so that  even very large and complex structures 
may be refined in a reasonable time. 

The group refinement is particularly useful in the 
early stages of a refinement and in cases where the 
intensity data are only of medium quality. In the 
final stages the structure should always be refined in 
the normal manner. This may either test the concept 
of the rigid group which has so far been used, or may 
demonstrate that  the intensity data are not suf- 
ficiently accurate to improve the configuration of the 
group, which has already been established with a 
higher degree of accuracy by other method~, 

M a t h e m a t i c a l  t r e a t m e n t  

The most straightforward method to refine groups as 
a compact unit seems to be the use of 6 positional 
parameters, which define a group uniquely in crystal 
space. 3 of them are translational parameters x0, y0, z0, 
which define the basepoint of the group; the other 
3 are angles 99, 0, ~, which define its orientation. The 
basepoint is the origin of a Cartesian coordinate 
system, in which the position of all atoms belonging 
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to a specific group is expressed in ~ngstrSm units. 
The choice of the basepoint is arbitrary in isotropic 
refinement. 

The thermal parameters refer to the group as a 
whole. Initially 1 isotropic parameter will be sufficient, 
but ultimately 6 anisotropic parameters may be tried. 
These may be defined in the same way as they 
usually are for single atoms, but then angular vibra- 
tions of the group are not well accounted for. Thus it 
would be more appropriate to define the anisotropic 
parameters from the very beginning with respect to 
the principal axes of translation and libration. This 
can be done in principle, but in practice the correct 
set of principal axes is usually unknown. I t  can usually 
be guessed approximately and the guess may be 
judged from the refinement results obtained, but 
other methods (Cruickshank, 1956; Lonsdale & 
Millcdge, 1961) must ultimately be used. The choice 
of rotational thermal parameters with respect to 
principal axes has been included in the program, 
but till now their usefulness has not been established 
and thus a discussion of these parameters will not be 
given in this paper. 

In the following the Cartesian coordinates of the 
atoms in a group carry a prime; the coordinates in 
crystal space are unprimed. All coordinate systems 
are right-handed. A possible monoclinic angle must 
be chosen to be iV. Triclinic systems calmot be dealt 
with by the approach given here; a possible way to 
handle them can be found in the paper by Rossmann 
& Blow (1962). 

If the axes of the Cartesian coordinate systems are 
aligned with the unit-cell axes so that  x and x', and 
z and z' are parallel---y and y' need not be parallel 
because of a possible monoclinic angle iV490°--the 
final position of a Cartesian system will be reached 
by performing three rotations through the following 
angles : 

(1) Angle ~ about the z-axis. 
(2) Angle 0 about the x' axis (in its new position 

after (1)). 
(3) Angle 0 about the y'axis (in its new position 

after (1) and (2)). 

All angles are counted positive and clockwise when 
looking along their positive rotation axes. See Fig. 1. 
The 3 angles are Eulerian angles except for Q, which 
has y' as rotation axis instead of z'. 

The y'-axis should be chosen as the main symmetry 
axis of a group, if such a definition is possible. If the 
group consists only of 1 atom, all 3 angles are redun- 

/ / L/i 
/ V X / - - , - - L _ _ X  i..~., 

__/," % !/ 3V 
~ q" ~ ~  

F i g .  1. A n g l e s  q~, 0 a n d  e. 

dant parameters; with only 2 atoms (on the y'axis) 
Q is redundant and must not be refined. 

The geometrical structure factors are calculated in 
the normal manner from coordinates x, y, z. These 
have to be evaluated first from the origin and angle 
parameters of the group. In the first step the matrix 
elements g,~ connecting the Cartesian system with 
the unit cell are calculated from the angles qg, 0, 
and from the monoclinic angle y as can be seen from 
Table 1. 

Let x, be one of the 3 parameters x, y or z, x0~ the 
respective origin parameter of the group, a, the 
respective lattice constant a, b, or c, then the unit 
cell parameters x, of a given atom are obtained 
from the fixed parameters x', y', z' in the second step 
according to : 

x~ = Xoi + (gtlx' + gi2y' + gi3z')a-( 1. (1) 

The contribution to the structure factor of one group 
with Z atoms is given by: 

z z 

T(cos o~ .~VfrAr+sin ~x.~VfrBr), (2) 
r = l  r = l  

Ar and Br being the geometrical structure-factor term 
of the rth atom in the group, fr the form factor for 
the rth atom at rest, and T the temperature factor 
for the whole group, a is the phase angle for the 
whole structure factor. The structure factor is the sum 
of all expressions of type (2) representing the different 
groups. 

cos  ~ cos  ~ --  s in  ~ s in  Q s in  0 
- (sin ~ cos ~ + cos ~ sin ~ sin 0) cot y 

(sin ~ cos  ~ + cos  ~ s in  Q s in  O) s in  -1 y 

- sin Q cos 0 

Table 1. Matrix  elements g~ 

--  (s in ~ + cos  9 c o t  y)  cos  0 

cos  9 cos  0 s i n  -1 y 

s i n  0 

cos  ~ s in  ~ + s in  ~0 cos  e s in  0 
--  (s in  q~ s in  ~ -- cos  ~ cos  ~ s in  0) c o t  

(s in  ~ s in  ~ -- cos  ~ cos  ~ s in  O) s in  -1 y 

cos o cos 0 
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The normal  equations describing the ref inement  
procedure contain the derivat ives of the structure 
factor with respect to the parameters  to be varied. 
The number  of parameters  can be considerably re- 
duced if the group contains a large number  of atoms, 
but  the der ivat ives  themselves become more com- 
plicated. Let  x0i be one of the 3 origin parameters,  
T the tempera ture  factor, Z the number  of atoms, 
q~ the first  angle of a specific group, then  

z z 

0 I F  l/3Xo~ = T (cos o~ .~, fr OA/ 3Xri-t- sin a -.Y fr OB/ OXri) 
r = I  r = l  

and (3) 
z ~ OA ~x~ 

31F[/3cf = T cos ~ f i  2." 
= ~=1 3x~ Oq~ 

z  BOx q 
+ sin a _.,Y f~ .~ (4) 

r = l  i = l  OXr~ 0~9]  ' 

A and B being the geometrical  s tructure-factor  ex- 
pressions for the corresponding space group. From 
equat ion (1) follows: 

t t 1 3Xr,/ 3q~ = (( 3g~/ 3~)x; + ( 3g~/ 3qJ)y~ + ( 3g~/ O~)z,))a; . 
(5) 

Similar  equations to (4) and (5) hold for the derivatives 
wi th  respect to 0 and @. There are 27 derivat ives  of 
the elements g~k with respect to the angles of the type 
occurring in (5); 6 of them are zero, 6 reproduce 
some other elements g~ except for the sign, and 15 
form new tr igonometric  expressions. This can easily 
be seen from Table 1. 

C o n v e r g e n c e  properties 
The reduction of parameters  by  using group para- 
meters necessarily effects a worse fi t  of the calculated 
structure factors to the observed ones. Wi th  
intensit ies of moderate  accuracy and correct assump- 
tions of the group configurations, this  means tha t  a 
sharper average is drawn over the errors in the 
observed structure factors. Meaningless changes within 
a group cannot occur - -by  defini t ion of the group 
p a r a m e t e r s - - a n d  so prevent  an  exact  f i t  to the ex- 
per imenta l  values. Consequently the sum of the 
residuals and  the R-values will  remain  somewhat  
larger when group parameters  instead of single-atom 
parameters  are used. 

Of particular importance f0r any refinement proce. 
dure is the range wi th in  which the ref inement  leads 
to the correct structure,  because the appl icat ion of 
automat ic  methods is successful only in this  range. 
I t  will be shown that ,  with the use of group parameters ,  
the range will  often be larger t han  with single-atom 
parameters ,  the more so the larger the groups. 

The difference between group and normal  refine- 
ment  m a y  best be judged from a comparison of the 
corresponding matrices which represent the system of 
the normal  equations.  I t  can be shown tha t  the 
relat ion 

.~'a~iG~Gj(Aei+ As l )+  ~Y auG~_ie ~= 0 (6) 
i<]  

with A s~ = s~ - s (7) 

is valid, s is the shift  of a given group parameter ,  
and the s~ are the shifts of all  those s ingle-atom 
parameters  which would contr ibute  to the group 
parameter .  The summat ion  in equat ion (6) is t aken  
over all  these parameters .  The ai~ are the m a t r i x  
elements of the corresponding par t  of the single-atom 
matr ix ,  and the G~ m a y  be regarded as weight ing 
factors. For t rans la t ional  parameters ,  the G~ are all 1 ; 
for angular  parameters ,  they  are the der ivat ives  
~x/3cf etc as defined in equat ion (5). This can be seen 
from equations (3) and (4). In  equat ion (6) the f i rs t  
sum m a y  be neglected in a rough approximat ion  
because of the comparat ively  small  non-diagonal 
elements a~j. For s tructures containing only atoms of 
about  equal  atomic weight the au are of approx- 
imate ly  equal magnitude.  Thus equat ion (6) is reduced 
to 

ZG~A e~ = 0 .  (8) 

Equa t ion  (8) means  tha t  the shif t  s of the group 
parameter  is the weighted mean  of all  those single- 
a tom parameters  which contr ibute to it. I t  follows 
tha t  a group moves more s teadi ly  during the refine- 
ment,  and goes in the direct ion which would he t aken  
by the predominant  par t  of the single atoms. This  
suggests the following rule for structures with atoms 
of about  equal atomic weight:  ' If  40% of the single 
atoms belonging to a specific group converge to the 
correct s tructure min imum,  the whole group does also 
converge.' I t  is assumed in  the above tha t  the remain-  
ing 60% do not have a component  towards the correct 
min imum,  but  otherwise move randomly  so tha t  
indeed the 40% are predominant  in de termining the 
shift  of the group. This rule, which can be obtained 
from equat ion (6) only with the approximat ions  
mentioned,  can, of course, not be used to solve a 
par t icular  s t ructural  problem from a few correctly 
posit ioned atoms, but  is in tended to indicate  the larger 
region of convergence when group parameters  are 
used. 

The convergence behaviour  m a y  also be described 
in the following manner.  The correct s t ructure  
m i n i m u m  is the lowest possible m i n i m u m  in a space 
with a number  of dimensions equal to the number  of 
parameters. All other, incorrect, convergence points 
are relat ive min ima  and are dis t r ibuted around the 
correct min imum.  Their  number  is largely de termined 
by the number  of possible combinat ions between the 
parameters ,  e.g. a close belt of side minima,  in which 
always only one atom m a y  have a wrong position, 
surrounds the structure min imum.  Wi th  the introduc- 
t ion of groups the number  of parameters  and so the 
number  of possible side min ima  will be reduced, and 
convergence can often occur towards the correct 
s tructure m i n i m u m  from a more dis tant  s tar t ing point,  
i.e. with poorer t r ia l  values. 
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The disappearance of side min ima  is paral leled by  
the s ta tement  tha t  the shifts of the group parameters  
are the weighted means  of the shifts of the contr ibut ing 
single-atom parameters .  Thus numerous combinat ions 
of the shifts of single-atom parameters ,  which would 
lead to incorrect side minima,  are ruled out by  the 
power of averaging. The rigid body of the group 
excludes all those shifts of the single-atom parameters  
tha t  are inconsistent  wi th  it. 

Experimental results 

In  order to test  the properties of the method described, 
a F O R T R A N  program for the IBM 704 has been 
writ ten.  The full  ma t r ix  is computed and as m a n y  as 
15 groups (or 30 in the isotropic case) in the asym- 
metr ic  unit ,  each containing up to 30 atoms, can be 
refined. The space groups are t reated in a special 
subroutine,  which has to be wri t ten  by  the user. 
This subroutine need be programmed only for the 
par t icular  space-group expressions. In  this  way speed 
will  be gained relat ive to a routine sui table for all  
space groups, and complex space-group relations, 
such as general  and. special positions with relations 
between the parameters  for one structure,  can be 
programmed easily. 

In  the following the results of ref inement  for one 
hypothet ica l  and two actual  s tructures will  be given. 
The same t r ia l  s tructures were refined with respect 
to both group and single-atom parameters  with the 
program wr i t ten  by  the author.  The program by  
Busing & Levy (1961), which also does compute the  
full  matr ix ,  has been used to check the results when 
the parameters  of the single atoms were refined. 
F rom a fur ther  comparisor~ to the Busing & Levy 
program, which has been wri t ten in the S H A R E  
language and allows the use of a general s y m m e t r y  
routine, i t  could be concluded tha t  the speed lost 
by  using the F O R T R A N  language was largely regained 
by the use of a special s y m m e t r y  routine. 

Computing t ime is saved, when group parameters  
are used, because a smaller  ma t r ix  is being computed. 
Assume a structure with 3 groups, each containing 
6 atoms. The full  mat r ix  of position terms for all  
18 single atoms would contain 1485 elements,  whereas 
the reduced mat r ix  would contain only 171 elements.  

(a) A hypothetical structure in space group P21 
One benzene ring was placed in the asymmet r ic  

uni t  of the cell with 

a = 6.05, b = 9.24, c = 15.29 A; y = 75 °. 

70 three-dimensional  reflections wi th  10% error were 
used for the ref inement .  The correct s tructure had  
R = 0.108. Deviat ions of both t rans la t ional  and angular  
parameters  were t r ied independent ly  in different  
refinements.  The deviat ions of the t r ial  parameters  
from the correct parameters  are given. 

Translat ional  deviat ions:  zJx=0.04,  Ay=0 .03 ,  with 

R=0 .329 .  The devia t ion  is thus  a t rans la t ion  of 
0.37 /~. The group parameters  did converge correctly, 
the single-atom parameters  did not unt i l  the devia t ion 
was reduced to 0-2/~. 

Angular  deviat ions : A ~ -- d 0 --/1 @ = 60 °, with R = 
0.777. The group parameters  did converge, improving  
the s tructure in  each cycle by  about  8 ° for each 
angle. The single-atom parameters  did not converge 
unt i l  /~q~ -- /10 = A@ -- 4 ° was reached. For larger 
angular  deviat ions the matr ices  became near ly  sin- 
gular. 

This example  demonst ra tes  the great  power of 
convergence for the angles, but  has been chosen too 
favourably ,  as there is too much  empty  space in the  
cell. Thus for angular  deviat ions from the correct 
position no other position, compat ible  with the ob- 
served values, could be reached, which would provide 
a relat ive min imum.  For the single atoms in  the e m p t y  
space, no possible change improved thei r  position. 
For s tructures which are more closely packed, more 
relat ive min ima  are possible, and thus  the convergence 
range for group parameters  will  also be decreased. 

(b ) The structure of copper(II)-2-oxy- l-naphthaldehyde- 
ethylenediimine 
This s tructure has been invest igated by  C. Fre iburg  

& M. v. Stackelberg (to be published).  
The space group is B2/b. The lat t ice constants  are 

a = 34.9, b -- 14.9, c-- 7-0/~ ; y -- 95.2 °. 

Two projections have been measured with a total  
number  of 485 reflections. There is 1 molecule in the 
asymmet r ic  un i t ;  i t  contains 29 a toms;  2 oxygen, 
2 ni t rogen and 4 carbon atoms are in the neighbour- 
hood of the copper a tom and cannot be placed into 
a group. The last  20 atoms are 2 naph tha lene  rings, 
which spread sideways. For both ring systems a f irst  
t r ia l  s t ructure was ~ = 0, 0 =0 ,  @ =0 ,  obtained from 
packing and s y m m e t r y  considerations. I t  tu rned  out 
tha t  the s tructure was not  symmet r ic  and  the f inal  
values were ~1 = 3 "95 °, 01 = 18.21 o, @1 = 0.47 o, ~2 = 8.01 o, 
02=18-89 ° , @2=1.50 ° wi th  R--0 .172:  a result  ob- 
ta ined after  months  of labour  and more t han  15 
Fourier  and difference syntheses. The first  proposal 
was used as a t r ia l  s t ructure for a group ref inement ,  
the remaining 9 atoms being in their  f inal  position. 
The origin parameters  of the naphtha lene  rings, 
the tempera ture  and the scale factors were the f inal  
ones and kept  constant.  This t r ia l  s t ructure  had 
R = 0 . 3 3 4  and was refined to R = 0 . 1 7 2  in  11 cycles; 
the total  angular  shifts were the above f inal  values. 
For the second molecule the greatest  total  shift  for 
one a tom was 1.41 A, the average total  shif t  for all  
a toms was 0.65 /~. A ref inement  with respect to the 
parameters  of the single atoms stopped at  R=0-240  
after  11 cycles. 12 of the 20 atoms, i.e. 60% of the 
atoms which were shif ted in the ref inement  were 
off their  correct posit ion by more t han  0.3 A. This is 
in good accordance with the s ta ted rule. 
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The comput ing t ime for 1 cycle wi th  group para- 
meters  was 10 minutes ;  9 minutes  were needed to 
compute structure factors and  derivatives,  1 minute  
to set up and inver t  the matr ix .  Wi th  parameters  
of the single atoms the whole cycle took 25 minutes  
and  the m a t r i x  16. 

(c) The structure of phenol 
This s t ructure has been invest igated by  C. Scheringer 

(to be published).  
The space group is P21, the lat t ice constants are 

a = 6-05, b = 9.24, c = 15-29/~; y = 90 °. 

Two projections and three higher  layer  l ines have 
been measured wi th  a total  number  of 679 reflections. 
There are 3 molecules in the asymmetr ic  unit ,  each 
of which could well be regarded as a group. The f inal  
s t ructure had  R=0-223,  when group parameters  were 
used. Fur the r  ref inement  with single-atom parameters  
yielded R = 0.170, bu t  created considerable distortions 
of the benzene rings. For the convergence tests scale 
and  tempera ture  factors were the f inal  ones and kept  
constant.  

Translat ional  deviat ions:  

Ax1=0"08 A y l = - 0 . 0 2  A1=0"52 i 
Axe=0"08 Aye= 0"07 Az2=0"04 A2= 1"01 
Ax3=0"08 Aya= 0-07 Az3=0"04 A3= 1"01 

This t r ia l  s tructure had  R = 0 . 6 0 3  and converged 
correctly to R = 0 . 2 2 7  in  11 cycles, when group 
parameters  were refined. For the th i rd  molecule the 
greatest  to ta l  shift  for one atom was 1.45 J~, the  
average total  shif t  for all  a toms was 0.86 /~. Refine- 
ment  wi th  respect to the parameters  of the single 
atoms yielded R--0 .294 after  18 cycles. 5 atoms were 
off thei r  correct position by  more than  0-3 J~, 3 atoms 
by  more t han  0.2 J~. 

The computing t ime  for 1 cycle wi th  group para- 
meters  was 11 minutes ;  10 minutes  were needed to 
compute structure factors and derivatives,  1 minu te  
to set up and inver t  the matr ix .  Wi th  parameters  of 
the  single atoms the whole cycle took 32-5 minutes  
and  the ma t r i x  22. 

I t  should be noted tha t  not  all t r ia l  structures,  
which can be obta ined when the signs of the given 
deviat ions are varied, converge correctly; e.g. the  
structure with A~2= +6"9 ° does not. The positions 
of relat ive minima,  which prevent  correct convergence, 
cannot be predicted in  general. 

When  the s t ructural  problem permi ts  subdivision 
of the contents of the  uni t  cell into groups of known 
configuration the ref inement  with group parameters  
has definite advantages.  The most impor tan t  ones are 
the  larger region of convergence, the preservation of 
known configurations, and the saving of computing 
t ime.  

This t r ia l  s tructure had  R = 0 . 5 1 6  and  converged 
correctly to R = 0 . 2 2 7  in  10 cycles, when group 
parameters  were refined. Ref inement  with respect to 
the parameters  of the single atoms stopped at  R = 
0.359 after  18 cycles. 12 of the 21 atoms, i.e. 57% 
of the atoms which were shifted in the ref inement  
were off their  correct posit ion by  more t han  0.3 A, 
and fur ther  5 atoms by  more t han  0.2 A. This also 
is in  good accordance wi th  the s ta ted rule. 

Angular  deviat ions:  

f l ~ l =  9"8 ° f l01= 15"1 ° /1QI= 8.2 ° 
A ~02 = - 20.3 Z102 = - 19.6 fl ~2 = - 6.9 
zJq~3= 15"6 ZI03= 18"6 d ~ 8 =  7-2 

I am indebted  to the Deutsche Forschungsgemein- 
schaft  for f inancial  support.  
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