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Least-Squares Refinement with the Minimum Number of Parameters for
Structures Containing Rigid-Body Groups of Atoms
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A least-squares method for refinement of structures containing groups of atoms which may be
treated as rigid bodies is described. The number of parameters to be refined is reduced to the
minimum possible. Each group is determined by 6 positional parameters and 1 isotropic or 6
anisotropic thermal parameters. The properties of convergence are discussed, and examples of
refinements allow comparison with the normal least-squares method.

Introduction

In least-squares refinement of crystal structures
(Hughes, 1941) positional and thermal parameters of
the single atoms are usually refined independently,
and all programs, to my knowledge, proceed in this
way.

In many structures, however, particularly organic
ones, a number of atoms form a rigid-body unit, e.g.
the benzene ring, and so not all parameters are really
independent but must satisfy the restrictions of the
rigid body. ‘Rigid’ has to be understood as neglecting
the interatomic vibrations of a molecule or of a part
of it, but often this definition of ‘rigid’ in the first
stage of a refinement is sufficiently valid. If the
accuracy of the data permits, the rigid-body concept
may have to be discarded in the final stage of the
refinement.

Until this stage is reached, it is advantageous to
reduce the number of parameters and to determine
them with a correspondingly higher accuracy. Know-
ledge of the distribution of atoms of a specific group
is put into the refinement in order to evaluate the
really unknown parameters more exactly. A similar
idea has been developed in the field of the Patterson
synthesis, notably by Hoppe (1957) in the Falt-
molekiilmethode.

The use of group parameters instead of single-atom
parameters should offer the following advantages:

1. The group is forced to shift as a complete unit.
Meaningless changes of the parameters within a group
cannot occur, as they often do in normal least-
squares refinement when the intensity data are of
average or poor quality, e.g. as obtained by the
multiple-film method. From the mathematical point
of view this means that the set of single-atom para-
meters, which are being adapted to poor intensity data,
is reduced to a smaller set of group parameters, which
from the very beginning draws a sharper average
over the errors of the intensity data.

2. When only a few intensity values can be meas-
ured, it may be possible to refine a small number of

group parameters meaningfully, whereas the number
of single-atom parameters would be too large to
permit refinement.

3. The range of convergence to the correct structure
minimum is much larger than in the normal refine-
ment. This means that structures containing rigid
groups can often be refined successfully with the
group method, when the trial parameters are so poor
that the normal least-squares method cannot effect
convergence to the correct minimum. This is perhaps
the most important aspect of the method and will be
discussed in more detail in a later section.

4. Hydrogen atoms may be introduced at an early
stage of the refinement. One needs to know only their
positions relative to their neighbouring atoms.

5. When the groups contain many atoms, the order
of the matrix to be computed will be much lower.
This results in a considerable saving of computing
time, so that even very large and complex structures
may be refined in a reasonable time.

The group refinement is particularly useful in the
early stages of a refinement and in cases where the
intensity data are only of medium quality. In the
final stages the structure should always be refined in
the normal manner. This may either test the concept
of the rigid group which has so far been used, or may
demonstrate that the intensity data are not suf-
ficiently accurate to improve the configuration of the
group, which has already been established with a
higher degree of accuracy by other methods.

Mathematical treatment

The most straightforward method to refine groups as
a compact unit seems to be the use of 6 positional
parameters, which define a group uniquely in erystal
space. 3 of them are translational parameters o, yo, 2o,
which define the basepoint of the group; the other
3 are angles ¢, 0, o, which define its orientation. The
basepoint is the origin of a Cartesian coordinate
system, in which the position of all atoms belonging
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to a specific group is expressed in Angstrom units.
The choice of the basepoint is arbitrary in isotropic
refinement.

The thermal parameters refer to the group as a
whole. Initially 1 isotropic parameter will be sufficient,
but ultimately 6 anisotropic parameters may be tried.
These may be defined in the same way as they
usually are for single atoms, but then angular vibra-
tions of the group are not well accounted for. Thus it
would be more appropriate to define the anisotropic
parameters from the very beginning with respect to
the principal axes of translation and libration. This
can be done in principle, but in practice the correct
set of principal axes is usually unknown. It can usually
be guessed approximately and the guess may be
judged from the refinement results obtained, but
other methods (Cruickshank, 1956; Lonsdale &
Milledge, 1961) must ultimately be used. The choice
of rotational thermal parameters with respect to
principal axes has been included in the program,
but till now their usefulness has not been established
and thus a discussion of these parameters will not be
given in this paper.

In the following the Cartesian coordinates of the
atoms in a group carry a prime; the coordinates in
crystal space are unprimed. All coordinate systems
are right-handed. A possible monoclinic angle must
be chosen to be y. Triclinic systems cannot be dealt
with by the approach given here; a possible way to
handle them can be found in the paper by Rossmann
& Blow (1962).

If the axes of the Cartesian coordinate systems are
aligned with the unit-cell axes so that x and z’, and
z and 2’ are parallel—y and ¥ need not be parallel
because of a possible monoclinic angle y=90°—the
final position of a Cartesian system will be reached
by performing three rotations through the following
angles:

(1) Angle @ about the z-axis.

(2) Angle 6 about the 2’ axis (in its new position
after (1)).

(3) Angle p about the y’axis (in its new position
after (1) and (2)).

All angles are counted positive and clockwise when
looking along their positive rotation axes. See Fig. 1.
The 3 angles are Eulerian angles except for p, which
has ¥’ as rotation axis instead of z'.

The y'-axis should be chosen as the main symmetry
axis of a group, if such a definition is possible. If the
group consists only of 1 atom, all 3 angles are redun-
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Fig. 1. Angles @, 6 and p.

dant parameters; with only 2 atoms (on the y'axis)
¢ is redundant and must not be refined.

The geometrical structure factors are calculated in
the normal manner from coordinates z, y, z. These
have to be evaluated first from the origin and angle
parameters of the group. In the first step the matrix
elements gy connecting the Cartesian system with
the unit cell are calculated from the angles ¢, 0, o
and from the monoclinic angle y as can be seen from
Table 1.

Let x; be one of the 3 parameters z, y or z, xo; the
respective origin parameter of the group, a; the
respective lattice constant @, b, or ¢, then the unit
cell parameters z; of a given atom are obtained
from the fixed parameters z', ¥, z’ in the second step
according to:

i =20;+ (g’ +gioy’ +gi32 )a; L. (1)

The contribution to the structure factor of one group
with Z atoms is given by:

T(cosx X frAr+sina X fr By, 2)
r=1 r=1

Ar and By being the geometrical structure-factor term

of the rth atom in the group, f- the form factor for
the rth atom at rest, and 7' the temperature factor
for the whole group. « is the phase angle for the
whole structure factor. The structure factor is the sum
of all expressions of type (2) representing the different
groups.

Table 1. Matrix elements g

cos @ cos g—sin @ sin g sin 6
— (sin @ cos p+ cos @ sin g sin ) cot ¥

(sin ¢ cos 9+ cos @ sin g sin 6) sin~1 p

~sin g cos 6

— (sin @+ cos @ cot y) cos O

cos @ cos 0 sin~! y

sin 6

cos @ sin g+ sin @ cos p sin §
— (sin @ sin g — cos @ cos g sin 0) cot y

(sin ¢ sin g —cos @ cos g sin ) sin=1 y

cos g cos 0
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The normal equations describing the refinement
procedure contain the derivatives of the structure
factor with respect to the parameters to be varied.
The number of parameters can be considerably re-
duced if the group contains a large number of atoms,
but the derivatives themselves become more com-
plicated. Let xo: be one of the 3 origin parameters,
T the temperature factor, Z the number of atoms,
@ the first angle of a specific group, then

O|F|[0xo; = T (cos o« X fr0A]0xrs+sin o X frOB[ 0xrs)
r=1

r=1
and ®
2 3‘ 8A 81«'7-1'
0| F|jog = T(cos rxré;fr 51 Bar: O
2 3 0B 81?1'1'
i S — —— ’
+ sin [xr:lf i—1 0%ri 8<p> (4)

A4 and B being the geometrical structure-factor ex-
pressions for the corresponding space group. From
equation (1) follows:

0xri| 0@ = ((0gia| 0@)w, + (Ogiz Op)y; +(0gus| Op)2,) )i -

(5)
Similar equations to (4) and (5) hold for the derivatives
with respect to 6 and g. There are 27 derivatives of
the elements g:x with respect to the angles of the type
occurring in (5); 6 of them are zero, 6 reproduce
some other elements g except for the sign, and 15
form new trigonometric expressions. This can easily
be seen from Table 1.

Convergence properties

The reduction of parameters by using group para-
meters necessarily effects a worse fit of the calculated
structure factors to the observed ones. With
intensities of moderate accuracy and correct assump-
tions of the group configurations, this means that a
sharper average is drawn over the errors in the
observed structure factors. Meaningless changes within
a group cannot occur—by definition of the group
parameters—and so prevent an exact fit to the ex-
perimental values. Consequently the sum of the
residuals and the R-values will remain somewhat
larger when group parameters instead of single-atom
parameters are used.

Of particular importance for any refinement proce-
dure is the range within which the refinement leads
to the correct structure, because the application of
automatic methods is successful only in this range.
It will be shown that, with the use of group parameters,
the range will often be larger than with single-atom
parameters, the more so the larger the groups.

The difference between group and normal refine-
ment may best be judged from a comparison of the
corresponding matrices which represent the system of
the normal equations. It can be shown that the
relation

REFINEMENT WITH THE MINIMUM NUMBER OF PARAMETERS

2 a6 (Aei+Aej)+ Fau@F e ;=0 (6)
i<j

with Aei=gi—¢ (7)

is valid. ¢ is the shift of a given group parameter,
and the & are the shifts of all those single-atom
parameters which would contribute to the group
parameter. The summation in equation (6) is taken
over all these parameters. The a;; are the matrix
elements of the corresponding part of the single-atom
matrix, and the G; may be regarded as weighting
factors. For translational parameters, the G; are all 1;
for angular parameters, they are the derivatives
0x/0g etc as defined in equation (5). This can be seen
from equations (3) and (4). In equation (6) the first
sum may be neglected in a rough approximation
because of the comparatively small non-diagonal
elements a;;. For structures containing only atoms of
about equal atomic weight the a:; are of approx-
imately equal magnitude. Thus equation (6) is reduced
to

2@ Aei=0. (8)

Equation (8) means that the shift ¢ of the group
parameter is the weighted mean of all those single-
atom parameters which contribute to it. It follows
that a group moves more steadily during the refine-
ment, and goes in the direction which would be taken
by the predominant part of the single atoms. This
suggests the following rule for structures with atoms
of about equal atomic weight: ‘If 409 of the single
atoms belonging to a specific group converge to the
correct structure minimum, the whole group does also
converge.’ It is assumed in the above that the remain-
ing 609, do not have a component towards the correct
minimum, but otherwise move randomly so that
indeed the 409, are predominant in determining the
shift of the group. This rule, which can be obtained
from equation (6) only with the approximations
mentioned, can, of course, not be used to solve a
particular structural problem from a few correctly
positioned atoms, but is intended to indicate the larger
region of convergence when group parameters are
used.

The convergence behaviour may also be described
in the following manner. The correct structure
minimum is the lowest possible minimum in a space
with a number of dimensions equal to the number of
parameters. All other, incorrect, convergence points
are relative minima and are distributed around the
correct minimum. Their number is largely determined
by the number of possible combinations between the
parameters, e.g. a close belt of side minima, in which
always only one atom may have a wrong position,
surrounds the structure minimum. With the introduc-
tion of groups the number of parameters and so the
number of possible side minima will be reduced, and
convergence can often occur towards the correct
structure minimum from a more distant starting point,
i.e. with poorer trial values.
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The disappearance of side minima is paralleled by
the statement that the shifts of the group parameters
are the weighted means of the shifts of the contributing
single-atom parameters. Thus numerous combinations
of the shifts of single-atom parameters, which would
lead to incorrect side minima, are ruled out by the
power of averaging. The rigid body of the group
excludes all those shifts of the single-atom parameters
that are inconsistent with it.

Experimental results

In order to test the properties of the method described,
a FORTRAN program for the IBM 704 has been
written. The full matrix is computed and as many as
15 groups (or 30 in the isotropic case) in the asym-
metric unit, each containing up to 30 atoms, can be
refined. The space groups are treated in a special
subroutine, which has to be written by the user.
This subroutine need be programmed only for the
particular space-group expressions. In this way speed
will be gained relative to a routine suitable for all
space groups, and complex space-group relations,
such as general and. special positions with relations
between the parameters for one structure, can be
programmed easily.

In the following the results of refinement for one
hypothetical and two actual structures will be given.
The same trial structures were refined with respect
to both group and single-atom parameters with the
program written by the author. The program by
Busing & Levy (1961), which also does compute the
full matrix, has been used to check the results when
the parameters of the single atoms were refined.
From a further comparison to the Busing & Levy
program, which has been written in the SHARE
language and allows the use of a general symmetry
routine, it could be concluded that the speed lost
by using the FORTRAN language was largely regained
by the use of a special symmetry routine.

Computing time is saved, when group parameters
are used, because a smaller matrix is being computed.
Assume a structure with 3 groups, each containing
6 atoms. The full matrix of position terms for all
18 single atoms would contain 1485 elements, whereas
the reduced matrix would contain only 171 elements.

(@) A hypothetical structure in space group P2;

One benzene ring was placed in the asymmetric
unit of the cell with

a=605, b=9-24, c=15-29 &; »="75°".

70 three-dimensional reflections with 109 error were
used for the refinement. The correct structure had
R =0-108. Deviations of both translational and angular
parameters were tried independently in different
refinements. The deviations of the trial parameters
from the correct parameters are given.
Translational deviations: Ax=0-04, Ay=0-03, with
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R=0-329. The deviation is thus a translation of
0-37 A. The group parameters did converge correctly,
the single-atom parameters did not until the deviation
was reduced to 0-2 A.

Angular deviations: Ap=A40=A4p=60°, with R=
0-777. The group parameters did converge, improving
the structure in each cycle by about 8° for each
angle. The single-atom parameters did not converge
until Ag = A6 = Ap = 4° was reached. For larger
angular deviations the matrices became nearly sin-
gular.

This example demonstrates the great power of
convergence for the angles, but has been chosen too
favourably, as there is too much empty space in the
cell. Thus for angular deviations from the correct
position no other position, compatible with the ob-
served values, could be reached, which would provide
a relative minimum. For the single atoms in the empty
space, no possible change improved their position.
For structures which are more closely packed, more
relative minima are possible, and thus the convergence
range for group parameters will also be decreased.

(b) The structure of copper(1I)-2-oxy-1-naphthaldehyde-
ethyleneditimine
This structure has been investigated by C. Freiburg
& M. v. Stackelberg (to be published).
The space group is B2/b. The lattice constants are

a=349, b=14.9, ¢c=7-0 A; y=95-2°,

Two projections have been measured with a total
number of 485 reflections. There is 1 molecule in the
asymmetric unit; it contains 29 atoms; 2 oxygen,
2 nitrogen and 4 carbon atoms are in the neighbour-
hood of the copper atom and cannot be placed into
a group. The last 20 atoms are 2 naphthalene rings,
which spread sideways. For both ring systems a first
trial structure was =0, §=0, p=0, obtained from
packing and symmetry considerations. It turned out
that the structure was not symmetric and the final
values were @1 =3-95°, 61 =18-21°, 01 =0-47°, g2 =8-01°,
0:=18-89°, 02=1-50° with R=0-172: a result ob-
tained after months of labour and more than 15
Fourier and difference syntheses. The first proposal
was used as a trial structure for a group refinement,
the remaining 9 atoms being in their final position.
The origin parameters of the naphthalene rings,
the temperature and the scale factors were the final
ones and kept constant. This trial structure had
R=0-334 and was refined to R=0-172 in 11 cycles;
the total angular shifts were the above final values.
For the second molecule the greatest total shift for
one atom was 1-41 A, the average total shift for all
atoms was 0-65 A. A refinement with respect to the
parameters of the single atoms stopped at R=0-240
after 11 cycles. 12 of the 20 atoms, .e. 60% of the
atoms which were shifted in the refinement were
off their correct position by more than 0-3 A. This is
in good accordance with the stated rule.
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The computing time for 1 cycle with group para-
meters was 10 minutes; 9 minutes were needed to
compute structure factors and derivatives, 1 minute
to set up and invert the matrix. With parameters
of the single atoms the whole cycle took 25 minutes
and the matrix 16.

(¢) The structure of phenol

This structure has been investigated by C. Scheringer
(to be published).
The space group is P2;, the lattice constants are

a=6-05, b=924, c=15-29 A; »=90°.

Two projections and three higher layer lines have
been measured with a total number of 679 reflections.
There are 3 molecules in the asymmetric unit, each
of which could well be regarded as a group. The final
structure had R=0-223, when group parameters were
used. Further refinement with single-atom parameters
yielded R=0-170, but created considerable distortions
of the benzene rings. For the convergence tests scale
and temperature factors were the final ones and kept
constant.
Translational deviations:

Ax;=0-08 Ayi=—0-02 A1=0-52 A
Az2=008 Ayz= 007 Az=004 A3=1:01
Ax3=0-08 Ays= 007 Az=004 A3=1-01

This trial structure had R=0-516 and converged
correctly to R=0-227 in 10 cycles, when group
parameters were refined. Refinement with respect to
the parameters of the single atoms stopped at R=
0-359 after 18 cycles. 12 of the 21 atoms, i.e. 57%
of the atoms which were shifted in the refinement
were off their correct position by more than 0-3 A,
and further 5 atoms by more than 0-2 A. This also
is in good accordance with the stated rule.

Angular deviations:

Api=  9-8° A6,= 15-1° A= 82°
Apa=—20-3 Afs=—19-6 Ag2=—6-9
Aps= 156 A63= 186 Ags= T2

REFINEMENT WITH THE MINIMUM NUMBER OF PARAMETERS

This trial structure had R=0-603 and converged
correctly to R=0-227 in 11 cycles, when group
parameters were refined. For the third molecule the
greatest total shift for one atom was 145 A, the
average total shift for all atoms was 0-86 A. Refine-
ment with respect to the parameters of the single
atoms yielded R =0-294 after 18 cycles. 5 atoms were
off their correct position by more than 0-3 A, 3 atoms
by more than 0-2 A.

The computing time for 1 cycle with group para-
meters was 11 minutes; 10 minutes were needed to
compute structure factors and derivatives, 1 minute
to set up and invert the matrix. With parameters of
the single atoms the whole cycle took 32-5 minutes
and the matrix 22.

It should be noted that not all trial structures,
which can be obtained when the signs of the given
deviations are varied, converge correctly; e.g. the
structure with Ags=+6-9° does not. The positions
of relative minima, which prevent correct convergence,
cannot be predicted in general.

When the structural problem permits subdivision
of the contents of the unit cell into groups of known
configuration the refinement with group parameters
has definite advantages. The most important ones are
the larger region of convergence, the preservation of
known configurations, and the saving of computing
time.

I am indebted to the Deutsche Forschungsgemein-
schaft for financial support.
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